Light-Soaking Effects on the Open-Circuit Voltage of a-Si:H Solar Cells

نویسندگان

  • Jianjun Liang
  • Eric A. Schiff
  • Baojie Yan
  • J. Yang
  • E. A. Schiff
  • S. Guha
  • B. Yan
چکیده

We present measurements on the decline of the open-circuit voltage VOC in a-Si:H solar cells during extended illumination (light-soaking) at 295 K. We used a near-infrared laser that was nearly uniformly absorbed in the intrinsic layer of the cell. At the highest photogeneration rate (about 2x10 cm), a noticeable decline (0.01 V) occurred within about 10 minutes; VOC stabilized at 0.04 V below its initial value after about 200 hours. We found that both the kinetics and the magnitudes of VOC are reasonably consistent with the predictions of a calculation combining a bandtail+defect picture for recombination and a hydrogen-collision model for defect generation. The version of the hydrogen-collision model that we used assumes that only bandtail recombination drives the hydrogen collision processes. Within this picture, the crossover between bandtail and defect recombination occurs on the same timescale as the “light-induced annealing” process that accounts for stabilization of the optoelectronic properties for long lightsoaking times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Light Induced Degradation on Passivating Properties of A-si:h Layers Deposited on Crystalline Si

Passivation properties of intrinsic hydrogenated amorphous silicon (i a-Si:H) layers on nand p-type doped monocrystalline silicon (c-Si) are studied in two thickness series. The effect of light soaking on the passivation performance of a-Si:H i-layers of varying thicknesses are evaluated. Within the thickness series, optimized i a-Si:H layers show very good passivation properties (Seff as low a...

متن کامل

Effect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells

Effects of temperature on electrical parameters of polysilicon solar cells, fabricated using the phosphorous spin-on diffusion technique, have been studied. The current density–voltagecharacteristics of polycrystalline silicon solar cells were measured in dark at different temperaturelevels. For this purpose, a diode equivalent model was used to obtain saturation current densi...

متن کامل

INVITED FEATURE PAPERS a-Si:H/lc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production

Thin film silicon tandem junction solar cells based on amorphous silicon (a-Si:H) and microcrystalline silicon (lc-Si:H) were developed with focus on high open-circuit voltages for the application as photocathodes in integrated photoelectrochemical cells for water electrolysis. By adjusting various parameters in the plasma enhanced chemical vapor deposition process of the individual lc-Si:H sin...

متن کامل

An Investigation of Temperature Effects on Solar Photovoltaic Cells and Modules

The solar photovoltaic (PV) systems are facing serious problems due to unavoidable losses in their system, leads to more devation of output power from the input power level. This effect is known as a mismatch effect and is available in PV systems. Many losses are encountered in PV system and it is difficult to minimize such losses. In this paper, the influence of thermal effect on the solar PV ...

متن کامل

The Construction and Comparison of Dye-Sensitized Solar Cells with Blackberry and N719 Dyes

In a dye-sensitized solar cell (DSSC), the amount of light absorption dependson the design of the pigments, which determines the strength of light absorption and theoptical range of the cell. In this paper, we have constructed and studied two fairly similarpattern of DSSCs in structure. The thickness of TiO2 used for both cells is taken to be 2μm. We have used an industrial N719 dye for one of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005